
Collective modes in open systems of nonlinear random waves†

Andrés Larraza(1) and Gregory Falkovich(2)

(1)Physics Department, Naval Postgraduate School, Monterey, CA 93943, USA

(2)Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel

Nonlinear random classical waves driven far off equilibrium by the steady input of

energy can support propagating collective modes analogous to zero sound in

Fermi liquids.  The conditions for the existence of these collisionless and

dispersionless modes are presented.  Applications to a variety of systems as well

as experiments to test the theory are suggested.  In particular, this article

predicts that for gravity waves on the surface of a liquid both, a longitudinal and a

transverse collective modes are possible in the collisionless regime.
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In his theory of Fermi liquids, Landau introduced the concept of zero

sound as a collective mode of quasiparticles in the collisionless limit [1].  On the

microscopic level, a distortion of the quasiparticle distribution leads to an

imbalance of the average interaction, providing a restoring force for the

macroscopic collective oscillation about equilibrium.  This should be contrasted

with ordinary sound where collisions among the (quasi) particles tend to restore

the equilibrium distribution.  When the frequency of oscillation is nearly equal to
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the collision frequency, there is a maximum in the attenuation:  in this regime

collisions tend to disrupt the zero sound mode, and there are not enough

collisions to establish a local equilibrium and allow for an underdamped ordinary

sound mode.

In this article we emphasize that the concept of zero sound is not unique

to Fermi liquids; an analogous mode can manifest in an open system of random

waves where the minimum allowed resonant interactions occurs in sets of four

waves.  In complete parallel with a Fermi liquid, the frequency (energy) of any

wave (quasiparticle) is a functional of the wave action (distribution function)

because of nonlinearities.  If the system allows for three-wave resonant

interactions such a mode is overdamped, as will be shown below.  Gravity waves

on the surface of a liquid, plasma waves, spin waves, and flexural waves on flat

plates are examples of systems where quaternary wave interactions are the

minimum number allowed.  In the first three examples, the dispersion relations

imply the kinematic conditions

k k k k0 1 2 3 0± ± ± = , ω ω ω ω0 1 2 3 0± ± ± =   , (1)

for wavevector and frequency respectively of the four waves.  Flexural waves on

flat plates have anomalous dispersion (ω ∝ k2 ) and thus the kinematic conditions

allow for three-wave resonant interactions.  However, for these plates symmetry

considerations demand the elastic free energy to be an even function of the

deformation from equilibrium and of its derivatives.  This means that the leading

order nonlinearity in the Hamiltonian is quartic and hence the minimum number

of interacting waves is four.

Collisionless collective modes in open systems of waves have been

previously considered for singular spectra (concentrated in points or lines in k -
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space) of parametrically excited waves [2].  In these works, a collective mode

results when the parametric pumping slightly exceeds the threshold value so that

one spherical harmonic or a standing wave are excited.  In contrast, we are

assuming a state of wave motion characterized by a spectrum where the

bandwidth of frequencies is broad and where the redistribution of energy is

dominated by inertial nonlinearities which are large compared to linear

irreversible transport processes.  Because of the many operational similarities to

the theory of hydrodynamic turbulence, we have chosen to call this state wave

turbulence.  Wave turbulent states can occur only when the amplitudes of motion

are sufficiently large that effects due to viscosity are negligible, which is precisely

the limit in which a Hamiltonian describes the wave motion.

With these considerations in mind, the most general Hamiltonian for a

weakly nonlinear system of four interacting waves is, to leading order [3]

H a a d T a a a a dk k k= +∗ ∗ ∗
+ − −� �ω δk

1
4

01230123 0 1 2 3 0 1 2 3,   , (2)

where we are using the shorthand notation a ai i= ( )k , d d d12 1 2... ...= k k , and

δ δ0 1 2 3 1 2 3+ − − = + − −( )k k k k , and "0" corresponds to k.  In (2) ωk = ω(k) is the

dispersion law for infinitesimal amplitude waves, ak are canonical variables, and

T0123,  is the scattering amplitude which is a symmetric function with respect to the

paired arguments.  From Hamilton's equations ∂ ∂ δ δa t i H ak k/ /= − ∗ , we can obtain
the evolution of the double correlator a ak k'

∗
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�
�

�

�
� = −∗ ∗ ∗

+ − −�( )' ' , '2 0123 0 1 2 3 0 1 2 3

}− ∗ ∗
+ − −T a a a a d0 123 0 1 2 3 0 1 2 3 123' , 'δ , (3)
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where without loss of generality we have assumed T01,23 to be real.  In order to

consider the problem of inhomogeneous distributions about an equilibrium state,

we let

a a nk k k k k kk' ' '
∗

−= +0 δ τ , (4)

where the small perturbation τkk' is nondiagonal in the wavevectors, indicative of

nonuniformities.  For waves, nk is the wave action spectral density with a

stationary and homogeneous value nk
o  which in general is prescribed by an

external agent (e.g., the wind in the case of gravity waves), energy transfer

among a homogeneous random wave field, and dissipation

Assuming that the random field is gaussian and keeping at most terms

linear in τkk'  we obtain

{ }∂
∂

ω ω τ δ τ δ τ
t

i i d T n T nk k kk
o o+ −

�

�
�

�

�
� = − −+ − − + − −�(~ ~ )' ' , ' ' ' ' , '13 010 3 0 1 0 3 0 31 0 103 0 1 0 3 0 13   , (5)

where ~ω ωk k
oT n d= + � 01 1 1 is the renormalized frequency, with T T01 0101= , .

Denoting k' = k - p, assuming that p << k, and expanding up to first order in p we

obtain

∂δ
∂

∂ω
∂
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∂
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n
t

n n
T

n
dk k k k

o

+ ⋅ − ⋅ =�
~

k r k r01
1 1 0 , (6)

where

δ τ τn e dk k k p k k p
i= ++ −

∗ ⋅�
1
2 ( ), ,

p r p (7)

is the spatially inhomogeneous wave action.
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Equation (6) is analogous to the equation used by Landau to describe

oscillations in a Fermi liquid in the collisionless regime [1].  In the case of

classical nonlinear random waves, it describes inhomogeneous spectral

distributions whose characteristic length scale is much greater than the

interaction length for energy transfer (collision mean free path for waves).

Assuming that δnk is proportional to ei i tqr⋅ − Ω  we obtain

( cos ) cosu v n
n
k

T n dk k
k
o

− = − �θ δ
∂
∂

θ δ01 1 1 , (8)

where u = Ω/q,  vk = ∂ω ∂%k k , and θ is the angle between the direction of

propagation q (taken as the polar axis) and the wavevector k.

As opposed to the theory of Fermi liquids, ∂ ∂n kk
o  is a smooth function of

k in a system of nonlinear random waves.  Thus, propagation is possible only if

the phase velocity u is larger that the group velocity vk of any wave of the wave

turbulent spectrum nk
o , otherwise strong Landau damping arises.  Except for

gravity waves on a deep fluid (see below), for all systems under consideration vk

has a maximum at the small-scale edge km
-1 of the wave turbulent distribution nk

o .

A solution to (8) with a constant kernel Tm is

δ ∂
∂

θ
θ

n AT n
k u vk m
k
o

k
= −

−
cos

cos
, (9)

where A is an arbitrary constant.  This solution would apply to spin waves in

antiferromagnets, for which the kernel T01 can be set equal to a constant [3].  It

also describes the vicinity of coincidence θ = θ1 = 0, k = k1 = km for an arbitrary

kernel.  Substituting (9) into (8) and integrating over angle, we obtain the

eigenvalue problem for u
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For s u vk k≡ >1, the term in brackets in (10) is positive.  Thus a sufficient

condition for a collective mode to exist is T n km k∂ ∂0 0< .  Wave turbulent

distributions roll off with increasing k, so they can support zero sound for Tm > 0.

Because of the presence of other waves, for Tm > 0 an individual wave has a

larger phase velocity than it would in the linear case.

The term in brackets in (10) is a monotonic decreasing function of sk.

Therefore, it  follows that in the weakly nonlinear limit (10) yields the value

u v k v T Nm m m m≈ + −1 O(exp ( ))   , (11)

where vm is the maximum group velocity in the spectrum and N ≈ �n dk
o k is the

wave action density (~number of waves per unit volume).  The fact that the

phase velocity of the collective mode has a value nearly equal to the maximum

group velocity in the spectrum does not preclude detection of the mode.  The

phase velocity u is independent of the frequency Ω and thus, as opposed to the

underlying waves, the mode is nondispersive.  This situation is analogous to

Fermi liquids, where the zero sound velocity has a value close to the Fermi

velocity, and the collective mode is a nondispersive compressional wave.

For deep gravity waves the interaction kernel can be well approximated by

T01 = k<
2k> cosγ / ρ, where k> (k<) is the greater (smaller) of k and k1, γ is the

angle between k and k1, and ρ is the density of the fluid.  The main contribution

to the integral in (8) comes from small values of k1.  This gives rise to two

propagation modes that satisfy the eigenvalue problem for u [4]
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where vk = (g/2k)1/2, ϑ ξ ξk
( )1

1 33= + , and ϑ ξ ξk
( )2

1 3= −  with ( )ξ n k k

n
s s= − −2 1 .

The first mode is longitudinal and can propagate for ∂ ∂n kk
o < 0, or NTp/kpvp>0,

where (kp)-1 is the large-scale edge of the wave turbulent spectrum, vp is the

maximum group velocity in that spectrum, and T kp p≈ 3 / ρ is the effective kernel.

In the limit of small nonlinearity

u vp/ ≈1+O((NTp/kpvp)2)   .  (13)

The second mode is transverse and can propagate for finite values of NTp/kpvp

that exceed 1/π.

Single probe wave height measurements would detect

δζ
ζ ρ

ωδrms
rms
o kg

n d≈ �
1

2
k  , (14)

where ζ rms
o  is the steady state rms surface height determined by nk

o  and g is the

acceleration due to gravity.  Only the longitudinal mode can be detected by a

single probe.  If the steady state distribution nk
o  is anisotropic, single probe

detection of the transverse mode is possible for propagation directions at an

angle with respect to the anisotropic axis.  Anisotropic spectra can be realized in

the case of wind-driven waves.  Excitation of the collective modes under

controlled laboratory tank experiments can be realized by launching modulated

noise pulses from a paddle into a broadband background of wind-generated

gravity waves.  In this case, the duration time of the modulation has to be much

smaller than the collision time but larger than the period of the individual noise
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components.  The theory predicts that the modulation will propagate without

dispersion.  Furthermore, the present results might find some applications to the

problems of directional spectrum and growth of wind-driven waves [4].

We emphasize that our approach is valid under the assumption that the

wave collision frequency τ-1 = (TN)2/kvk is smaller than both kvk and Ω = uq.

Consistent with the assumptions that led to (6) we conclude that zero sound in a

wave turbulent system can exist if the inequalities

k >> q >> k(TN / kvk)2 (15)

are satisfied.  Furthermore, from the reality conditions for (10) and (12), we

conclude that the existence of zero sound precludes the presence of

modulational instabilities.

For sk < 1  the mode is damped due to the coherent energy transfer of the

collective mode to the underlying random field of waves (Landau damping).  As

can be seen from both (10) and (12), sk < 1 means that Ω acquires an imaginary

part.  Depending on the form of the wave distribution, this leads to either

damping or pumping (i. e. instability) and in the later case, the original steady

state spontaneously evolves toward a final state which is determined by

nonlinearities.  On the other hand, we have assumed that the contribution to (10)

and (12) from regions that lie outside the distribution nk
o  that supports zero sound

can be neglected.  The assumption of a well defined wave turbulent region

makes the analogy to low-temperature Fermi liquid possible and thus allows the

existence of a mode similar to zero sound.  Furthermore, it can be shown that a

spectrally narrow energy pump generates a wave turbulent spectrum with a

sharp boundary [3].
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For three-wave interactions the collision integral that describes the energy

transfer among waves is a quadratic functional of the wave action and the wave

collision frequency τ-1 = (T3N)/kvk.  Thus, the distance over which there is an

energy transfer due collisions, is of the same order of magnitude as the

wavelength of the collective mode.  That is, the distance over which the

individual components of the random wave field change phase by 2π due to the

coherent effects of the collective mode (the last term in (6)) is of the order of the

collision mean free path which destroys such coherence.  Capillary waves,

acoustic waves, and flexural waves on thin shells are examples of systems

where ternary wave interactions are allowed.  For these systems an

underdamped collective mode is not possible.

When the collision frequency is much larger than the frequency of the

mode, a hydrodynamic description is required.  This description leads to a mode

analogous to ordinary sound (second sound).  For open systems, a steady state

results from the balance between a source, a flux transfer along the inertial

range of wavenumbers, and a sink.  For either three or four wave processes, the

hydrodynamic collective mode is overdamped at long wavelengths because

spatial modulations lead to a local mismatch of the distribution with the external

agent [5, 6].  In contrast, we have shown that in the collisionless regime a spatial

perturbation can propagate even in a highly turbulent medium.

It should be emphasized that the above results are for classical nonlinear

random waves.  The most important difference with the quantum case becomes

apparent in the collision integral, where for the classical case spontaneous

processes are neglected.  On the other hand, induced processes are

suppressed if there are no waves beyond the spectral boundary.  Thus the

absence of waves in the classical limit plays the role of Pauli exclusion in the

quantum limit.
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In summary, the collisionless Boltzmann equation for driven systems of

waves, where quaternary wave interactions is the minimum allowed number can

display a mode analogous to zero sound.  This collective mode can be detected

as an oscillation (compression or rarefaction) of the rms value of the fluctuating

quantity (e.g. (12)). One or more modes are possible in the collisionless regime

(longitudinal, transverse) in parallel to the theory of Fermi liquids.
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